

Mercury Dynamics in a Coastal Plain Watershed: A Multiple Model Approach

<u>Heather E. Golden¹</u>, Christopher D. Knightes², Paul A. Conrads³, Gary M. Davis², Toby D. Feaster⁴, Celeste A. Journey³, Stephen Benedict⁴, Mark E. Brigham⁵, and Paul M. Bradley³

¹ US EPA, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, Ohio, USA
 ² US EPA, Office of Research and Development, National Exposure Research Laboratory, Athens, Georgia, USA
 ³ US Geological Survey, South Carolina Water Science Center, Columbia, South Carolina, USA
 ⁴ US Geological Survey, South Carolina Water Science Center, Clemson, South Carolina, USA
 ⁵ US Geological Survey, Mounds View, Minnesota, USA

9th INTECOL International Wetlands Conference, Orlando, Florida, USA, 4 June 2012

Presentation Outline

Motivation and background Study questions Study site and approach Results and analysis Insights for watershed Hg modeling Summary

US EPA, Office of Research and Development National Exposure Research Laboratory, Cincinnati, Ohio

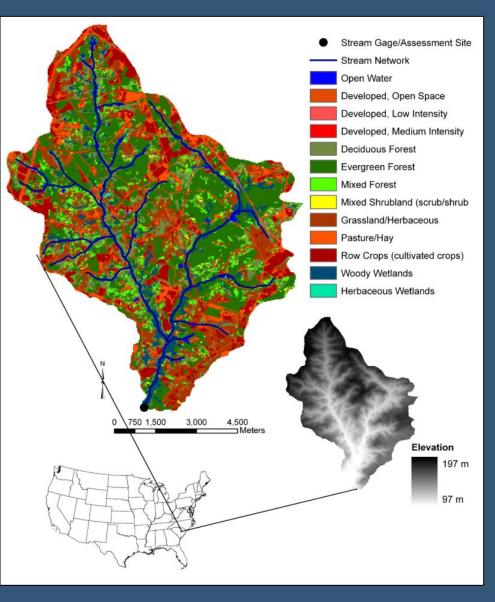
Motivation for Research

- Increase in watershed-scale Hg cycling research past two decades = important insights on Hg inputs, outputs, and processes in specific regions
- Watershed Hg models important tools for assessing and predicting ecological/human risks of Hg
 - Particularly true for Coastal Plain of US—a region of high methylmercury production and bioaccumulation
- Few spatially-explicit watershed models exist focusing on Hg cycling from landscape to surface waters
- Watershed models that capture wide range of landscape Hg processing are limited

Primary: Assess Hg cycling within a small Coastal Plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics

Simulating total Hg (Hg_T) concentrations and fluxes
 Hg_T first step towards MeHg dynamics

<u>Secondary</u>: Identify current needs in watershed-scale Hg modeling


McTier Creek Watershed, South Carolina, US

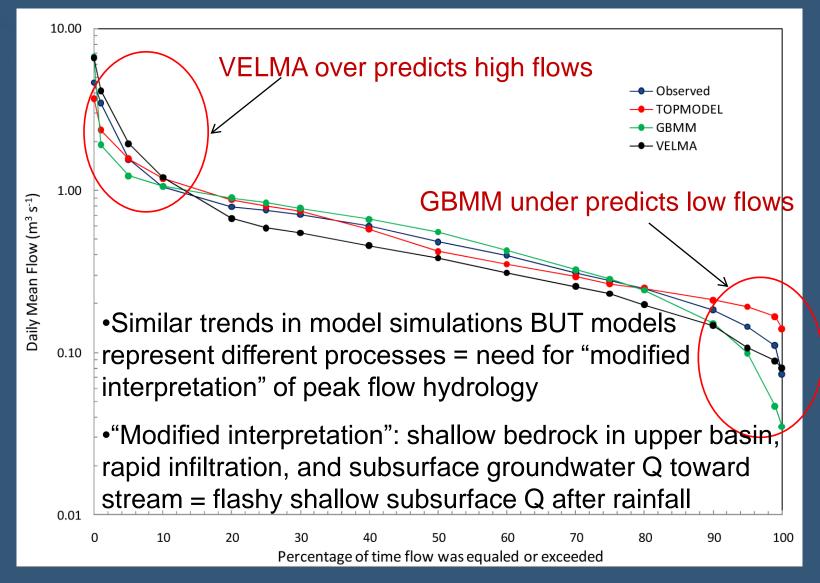
- Sand Hills region of Upper Coastal Plain, SC
- 79 km² drainage area

Mixed land cover: 49% forest,
 21% grassland and herbaceous,
 16% agriculture, 8% wetland, 5%
 developed, 1% open water

Shallow groundwater system

Low to normal flow: toward stream channel
High flow: same with increased area of groundwatersurface water exchange

Approach: Models (2007-2009 Simulation)

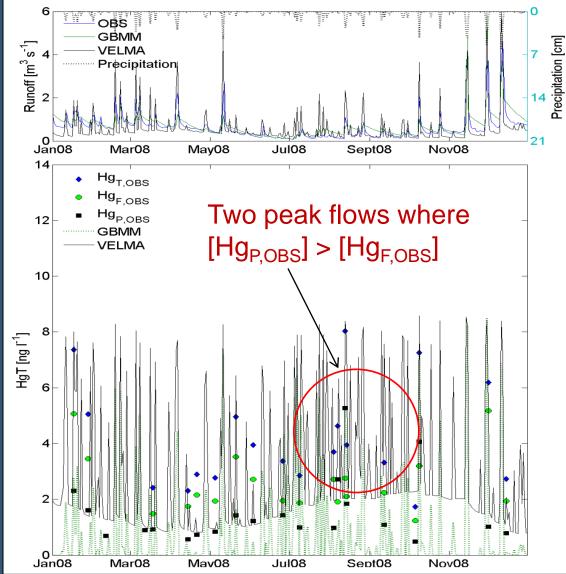

- Grid Based Mercury Model (GBMM). Spatially-explicit, process-based. Driven by surface runoff and sediment delivery (K_d for soil water partitioning) = mostly linked to particulate fraction of Hg_T. Provides source contribution from land cover types.
- Visualizing Ecosystems for Land Management Assessment for Hg (VELMA-Hg). Spatially-explicit, process-based. Hg_T fluxes associated with multi-soil layer hydrology and C, N, and Hg cycling = mostly linked to dissolved fraction of Hg_T
- TOPLOAD. Empirical, based on TOPMODEL hydrology. Identifies flow components contributing to Hg_T fluxes.
- S-LOADEST (seasonal results not presented today). Regression-based water quality flux estimator. Applied for seasonal load comparisons.

Approach: Models and Data

Data

- Daily streamflow at US Geological Survey stream gage (McTier Creek at New Holland)
- 41 samples at stream gage location (variety of flows):
 - Observed Hg_T (filtered and particulate)
 - Dissolved organic carbon (DOC)
 - Total suspended sediment (TSS)
- Set of tools (models and data) to compare conceptualizations of Hg_T dynamics to characterize Hg_T cycling
 - Data and models mutually informative
 - Parameters not forced beyond realistic values to match observations
 - Potential contributions of processes not included in the models is recognized

Results: Hydrology

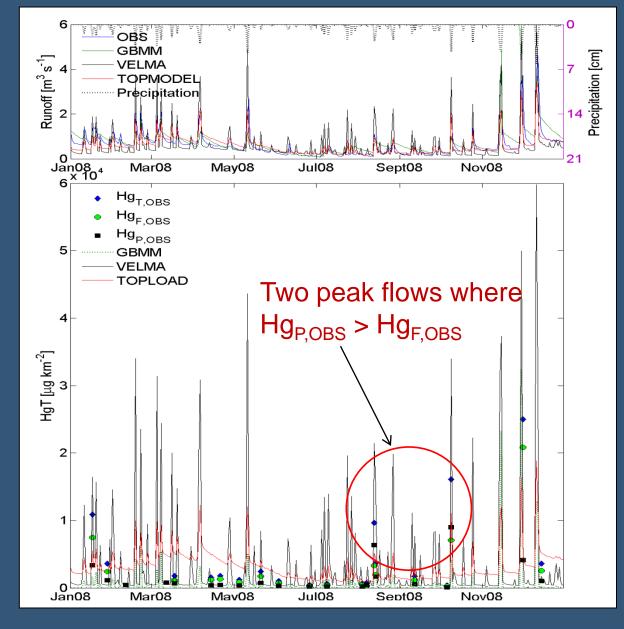


Hg_T Concentration: 2008

□ [Hg_{F,OBS}] > two-thirds Hg_{T,OBS}

Mean [Hg_{T,GBMM}] similar to mean [Hg_{P,OBS}]: 1.18 ng L⁻¹ & 1.27 ng L⁻¹

Mean [Hg_{T,VELMA}] similar to mean [Hg_{T,OBS}]: 3.54 ng L⁻¹ & 3.92 ng L⁻¹



Hg_T Fluxes: 2008

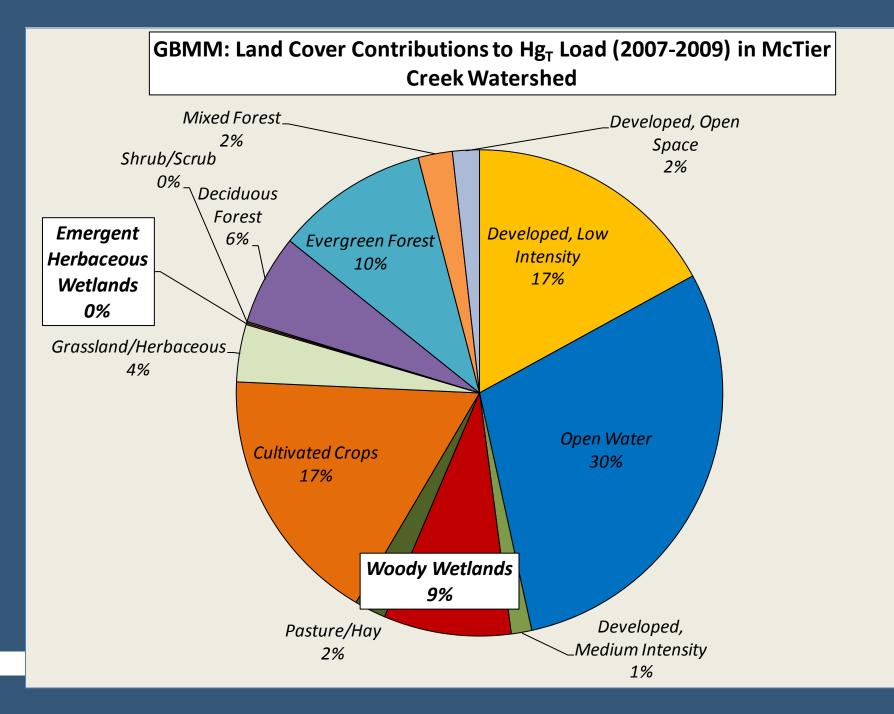
 \Box Hg_{F,OBS} > Hg_{P,OBS} for 39 of 41 sampling events

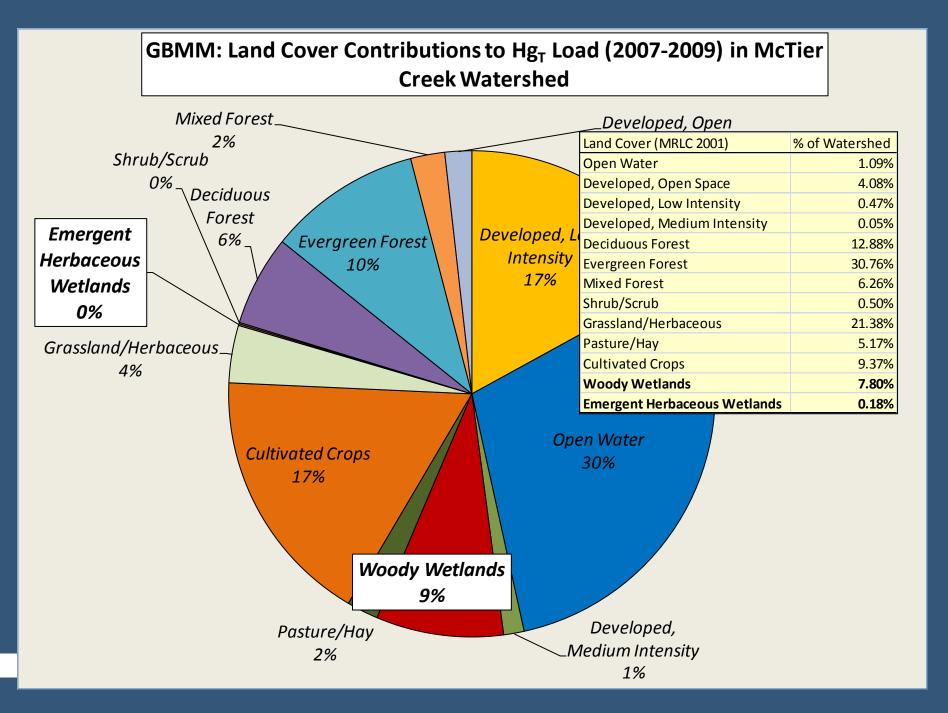
Mean Hg_{T,GBMM} fluxes (434 µg km² d⁻¹) low compared to other average Hg_T fluxes (flow duration = lowest low flows)

Mean Hg_{T,VELMA} fluxes higher (4438 µg km² d⁻¹) than all other modeled estimates (flow duration = highest high flows)

Hg_{T,GBMM} fluxes strongly linked to streamflow (OBS & GBMM, > 1.5 m³ s⁻¹)
 o Consistent with "modified conceptualization" of hydrology = flashy groundwater response under high flow becomes important for Hg transport

□ Hg_{T,GBMM} strongly linked to TSS_{OBS} and TSS_{GBMM}


□ Hg_{T,GBMM} threefold lower than average Hg_{P,OBS}


 $_{\rm O}$ Surface erosion important for Hg_T transport under high flow but need additional interpretations of in-stream Hg_T dynamics

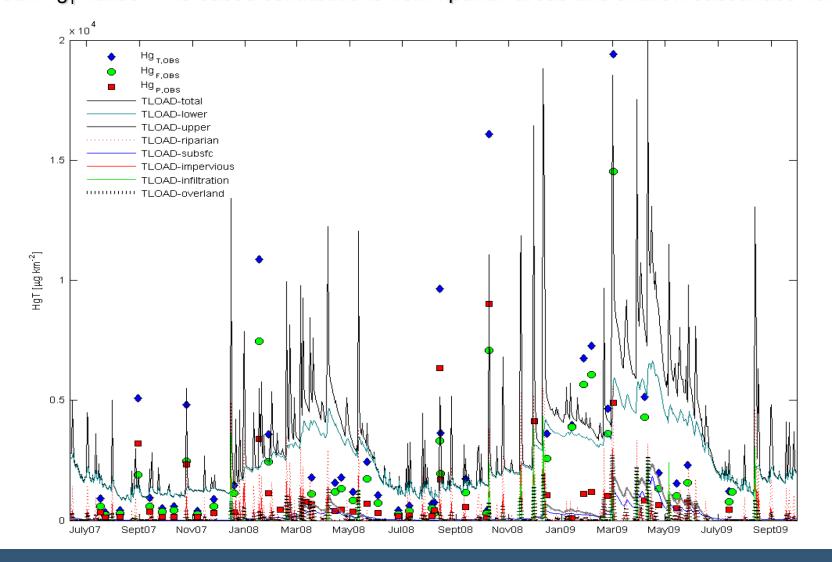
Concentrations	Hg _{T,OBS}	Hg _{F,OBS}	Hg _{P,OBS}	TSS _{OBS}	TSS _{GBMM}	Flow _{OBS}	Flow _{GBMM}		
Hg _{T,GBMM}			0.65***	0.60***	0.87***	0.30*	0.36***		
Fluxes	Hg _{T,OBS}	Hg _{F,OBS}	Hg _{P,OBS}	TSS _{OBS}	TSS _{GBMM}	Flow _{OBS}	Flow _{GBMM}		
Hg _{T,GBMM}	0.62***	0.41**	0.89***	0.78***	0.84***	0.55***	0.75***		
<mark>* is p<0.05, **</mark> p<									
all valation ships	all relationships with observed data, $p = 41$, relationships among modeled data only $p = 941$								

Pearson Correlation Coefficients

all relationships with observed data, n = 41; relationships among modeled data only, n=841

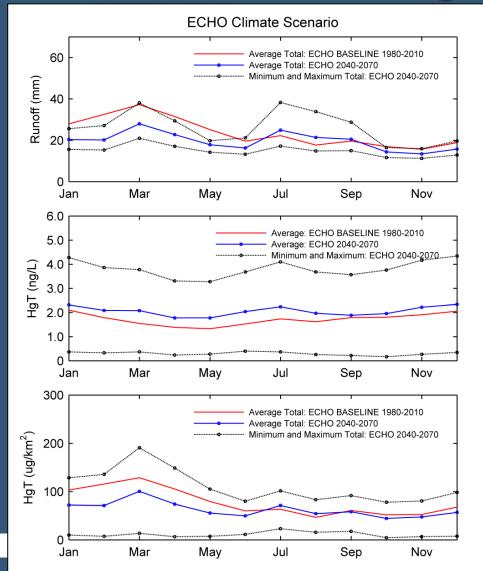
Dissolved Hg dynamics: Two different Hg/DOC interactions

Increase in Hg_{T,VELMA}, decrease in DOC_{VELMA}
 Model structure (VSA flow dominance following high rainfall)
 Direct runoff of high [Hg_T], low [DOC] rain from VSAs
 Low interaction of runoff with DOC in surface soils

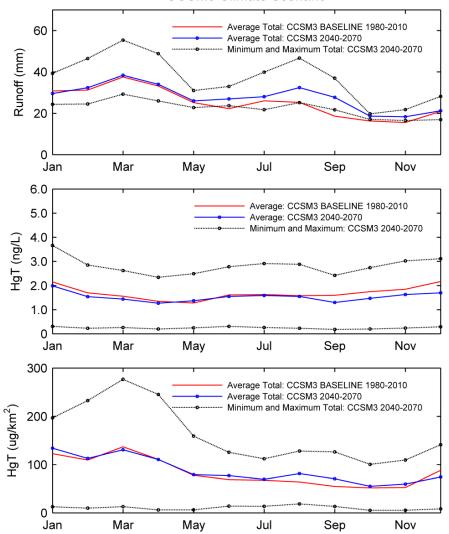

Increase in Hg_{T,VELMA}, increase in DOC_{OBS} and Hg_{T,OBS}
 DOC-bound Hg removal from floodplain soils following rainfall event

DOC-bound Hg more important during baseflow conditions

Concentrations	Hg _{t,obs}	Hg _{F,OBS}	Hg _{P,OBS}	DOC _{OBS}	DOC _{VELMA}	Flow _{OBS}	Flow _{VELMA}	
Hg _{T,VELMA}			0.58***	0.62***	-0.55**	0.31*	0.64***	
Fluxes	Hg _{T,OBS}	Hg _{F,OBS}	Hg _{P,OBS}	DOC _{OBS}	DOC _{VELMA}	Flow_{OBS}	Flow _{VELMA}	
Hg _{T,vELMA}	0.59***	0.38*	0.86***	0.49**		0.51**	0.97***	
* is p<0.05, **p<0.01, ***p<0.0001								
all relationships with observed data, n = 41: relationships amona modeled data only, n=841								


Pearson Correlation Coefficients

TOPLOAD Baseflow Hg_T fluxes driven by saturated subsurface flows (TLOAD-lower). Peak Hg_T fluxes = increased contributions from riparian areas and shallow subsurface flows.



US EPA, Office of Research and Development National Exposure Research Laboratory, Cincinnati, Ohio

Multiple Watershed Models: Experiment with Climate Change Scenario Analyses

CCSM3 Climate Scenario

Watershed Hg Modeling: Implications and Future Advances

GBMM use in highly erodible landscape (e.g., agricultural)

VELMA-Hg use in settings where DOC-bound Hg important (e.g., forests)

Additional processes needed in models: methylation, sulfur dynamics, variables that increase availability of other Hg species (e.g, pH, Fe, size/quality of OM), wetland cycling, in-stream processes

Hydrological model improvements – links to groundwater models and use of newest advances in hydrologic modeling

Summary: Key Findings

□Hg_{F,OBS} approximately two-thirds average Hg_{T,OBS}

GBMM: Shallow, subsurface flow and overland flow potentially important transport mechanisms of particulate Hg following high rainfall events

GBMM: Other in-stream processes could also be important (bank erosion, sediment resuspension) but not currently part of models

VELMA-Hg: Dissolved Hg likely directly transported from VSAs in watershed following high rainfall events

□ *VELMA-Hg*: DOC-bound Hg more important during baseflow conditions

□ *TOPLOAD*: Saturated subsurface flow important for HgT fluxes during baseflow

Many advancements needed in science of watershed Hg modeling

Thank you!

Questions?

golden.heather@epa.gov

For further details see: Golden, HE, CD Knightes, CA Conrads, GM Davis, TD Feaster, CA Journey, ST Benedict, MA Brigham, and PM Bradley. 2012. *Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data*. <u>Journal of Geophysical Research:</u> <u>Biogeosciences</u>: 117, doi:10.1029/2011JG001806